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1. Introduction

The current interest in hypersonte Hows invigorates the interdisciplinary rescarch of chem-
ical kineties and aerodynamics.  Signilicant progress Lias been made in simulating the
nonequilibrinm dissociation phenomenon for high temperature air associated with hyper-
sonte Hight M1 When the energy level of a gascous medium reaches an even higher excited
state, the gas atoms tonize. The moving charged particles of the tonized gas mixture. will
in turn, create an electromagnetic lield and imtroduce an additional diffusion process for
cuergy trausfer’. .\ seemingly unrelated current interest in radar cross-section reduction

6.7.8

research also receives considerable attention™* . In this scientific discipline. a major por-

tion of the effort must concentrate on analyzing the scattering or reflecting of waves in an

19 Ty this sense. the two entirely different arcas of rescarch have a

clectromagnetic fiele
comton interest, namely to acquire a better analytical capability for the clectromagnetic
ficld.

Both the forced diffusion of an ionized heterogencous gasous mixture and the scattering
and emission of electromagnetic waves from radiating bodies can be described by the time-
dependent Maxwell equations. The system of partial differential equations is hyperbolic
and is an initial-value problem!?. Since the eigenvalues of the system of equations are real.
the values along two intersecting characteristics determine the solution evervwhere. and
any discontinuities of a given solution would be continued into the interior domain. Lor
all linite-difference time-domain approximations of the Maxwell equations. a fundamental
dilemma arises from the necessity to impose boundary conditions on a finite spatial domain
to an 1nitial-value problem. In addition to the possible degradation of the numerical solution
accuracy of the interacting incident and scattering wave patterns. the reflecting waves from
the artificial boundaries lead to erroncous accwnulations of energy in the computational

.11

domain. leading. in turn. to unrealistic modulations of the wave amplitude™!, Numerous




approximations over the vears have been developed to overcome this dilemmat 420 The

most requently adopted nmerical procedure is probably that of Enquist and Majdatt .

1
their approach. the unbounded surrounding at the artiticial boundaries is simulated by using
absorbing boundary conditious.  In spite of its suecessful applications. the approsimate
boundary condition. however, stll is inherently linited as applied to the wotal field!.

Another pacing item arising, from wwnerical simulations of the radar signature analysis

is an urgently needed improvenent in numerical efficieney =219,

Lor wave propagation
phenomenon. the adequate numerical resolution of wave packets at a given frequency s
dictated by the minimal wave number within the frequency range. At an extremely high
frequency. e eigahiertz range. the required nunber of discretized data nodes to solve a
practical engineering problem is enormmous™". The aggregated cousequence is that large
amounts of data are to he processed. usually by a conditionally stable numerical algorithn.
which limits onr capability in this arca of scicentific endeavor. .\ possible alternative may be
derived from the recent advances in Hux-splitting schemes for solving the Luler equations
i cotputational Huid dyvnamics (C1D) 191718102028

The fundamental idea of lux-splitting methods in solving hyperbolic systems of equations

16, 17,18

Is based on the cigenvalue analysis In finite-dilference approximations. the well-

poscdness requirement and the numerical stability of the solving scheme are ultimately

linked to eigenvalues of the governing equations®#%. The most recent progress in char-
. . . . . R . iy s D495
acteristic based and the total variation diminishing (‘I'VD) schemes* # demonstrate that

numerical stability and accuracy can be drastically improved by using an appropriate finite
differencing for split flux vectors according to the signs of the eigenvalues. In essence. the
system of equations is manipulated to achieve the Ricmann problem? . For the clectro-
magnetic field of radar signature analysis, the main concern is the appropriate treatment
of incident and scattering wave propagation {rom a reflecting body. Thus. the elimination

of nonphysical reflecting waves from artificial outer boundaries 1s a paramount concern




amed could be alleviated by the theory of characteristies™ ", The present effort will address
this issie by using @ newly acgnived CEFD techinique for clectromaenetic tield calenlations.
The approach to munerical efficiency mprovenment is also based on the nnconpled clecn-
vector structure and the mtroduction of stitable imiplicit aleorithins to solve thie Maswell
cquations.

The Hux-splitting techinique. however. has an inhierent limitation in that the cocllicrent
matrices of the governing cquations when written in Hux vector form can be diaeonalized

WSS P herefore. in mudtidimensional analyvsix. the exact

in only one dimension at a tine
no-reflection farfield wave condition is achicvable only for wave motion which possesses a
dominant orientation. In principle. this favorable condition is attainable by casting the
Maxwell equations in general curvilinear coordinates. Ou the artilicial farlield boundary.
the coordinate will be adapted to align with the principal axis of the wave propagation 1o
climinate or at least to minimize undesirable wave rellection. On the interlace of diclectric
media of differemt permittivities. the complex scattering shape will be prescribed by a body
conformal coordinate surface. The surface outward normal. required by the boundary
relationships of the electromaguetic fields!. can be casily computed.

In suwmmary. the present investigation attempts to develop efficient munerical procedures for
solving the time-dependent Maxwell equations i free space. The electrie flux density and
the magnetic flux density will be transformed by a diagonalizing matrix to acquire invariants
along the respective characteristics. The split aud uncoupled {nx vectors will then be solved

by second-order temporal and spatially windward finite-dillerence approximations.




2. Analysis

Maxwell's equationus lor the electromagnetic field m free space can be written i Hux veer o

formt in a Cartesian frame ast!
JU g ar + JCOUdll ot
ar ot de at dy Lot -
U =il =JU  =Jl
— / — —_—
ot e Jy J:

Wlhere the cocllicient matrices (Jacobian of thux vectori AL B. aud O are:
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Where ¢ and proare the permittivity and permeability which relate the electrie fnx densin
1o the electrie field mensity and noagnetic flux density to the magnetic beld mtensiny
l(h\p('('!i\'(‘[.\'.

The cieenvaliues ol the coeflicient matrices A B and © are identical. and unfortinately
contain multiplicities. € re must he exercised to cusure that all associated cligenvectors are

lincarly mdependent.

“”+1 : “+l : 0 (2.1
A= \/7. \/UT“ \«'T/—/' \/W. 2.

However. linecar independent cigenvectors assoctated with cacli eigenvalne still can be fonnd
by reducing the matrx equation.(LU = TA)N = 0. to the Jordan normal form.

According 1o matrix theorye if the coellicient matrix 4 (or B or ') can be diagonalized.

then there exists a nonsingular matrix S sucl that

ﬁ‘\ = f— s {(2.9)

The columns of 5 are simply the eigenvectors of the coeflicient matrix 1.
The multicimensional Maxwell equations are separated into one-dimensional components
i cach direction ol the Cartesian [rame. For the present investigation and without loss ol

generality the scattered waves are considered to be conlined inisotropie niedia separated by

physical interface. Under these conditions. the permittiviy and permeability are assumed




o have constant values't o T ovefores the lefi-hand inverse of the similarity transforation
Hatris S cat be bronelit into the dillerentiation witle respect to both time and space. The
vesnlting equation: ndicate that aony trajectories with slopes of positive and negative
specd of liehts and with zovo cigenvalue. the chiaracteristic variables are mvariant. Most
inportantly for the systews ol cqgnations. all transtortned dependent variables are completely
nucoupled and can be solved tndividually, Tn other words. the matrix system is decomposed
o upper apd lower tridiagoual stmctires . Ouly asingle sweep will e required to solve the

cotnplete systea of discretized equations. For an implicit solving scheme. the pentadiagona!

ninversion procedure becones winecessary aid leads to a very efficient numerical procedure.
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Stilar expressions for the two other components are found in the identical manner. The

wnltidimensional problem will be solved by either a windward explicit method or an ap-

proximate factored implicit scheme? % A specilic selection of numerical algorithms is one
of the major rescarch goals. .\ eriterion of the chivice is that the algorithm vield low dissi-

pative and dispersive errors. In this connection. numerical schemes which can satisfy the

6




shift condition in the degenerated one-dimensional setting is sought= %=,

The case of
implementation of boundary conditions on either a scattering body or the onter computa-
tional domain is also & major consideration. For a sumple wave equation. the preference
seens to have been biased toward the explicit windward miethod by Warming and Bean'="
However, a windward implicit method also possesses this umgne property and is inchided
in the present investigation=",

A critical step here s that the finite differencing is nnplemented to honor the physical

orientation of the wave propagation™ %13,

For example. forward and backward differencing
ol the spatial variables are formed for the negative and the positive eigenvalue respectively,
In generald information is propagated from the mterior/exterior of the computational do-

5 The characteristic equations. Eq (6). are

main to the houndary along characteristies™
really the compatibility relationships and are equally applicable on the boundaries of the
computational domain. To use characteristic data to establish the exit wave boundary con-
ditions. knowledge of the orientation of the wave front with respect to the boundary surface
becomes essential. X nnigue feature of the electromaguetic field provides this required in-
formation nicely. In free spaces the direction of wave propagation is alwayvs known since
the clectromagnetic waves move in the direction perpendicular to both the electric and
magnetic fields. £+ 1171 Near the outer control surface. the characteristic equations will
he projected to the principal axis of the wave motions based on the known local solution.
A\ coordinate transformation from the Cartesian frame to a general curvilinear system can
then be adopted to ensure coordinate alignment with wave motion. Another advantage of
the coordinate transformation is that it permits a high numerical resolution by local mesh
refinement il necessary®?. Meanwhile. the complex scattering body is easily represented by
body conlormal coordinates.

A\ general curvilinear coordinate transformation is introduced by defining a one-to-one rela-

tionship between two sets of independent variables. In the present analysis. the coordinate




svstenn s Huded to the spatially independent variables.

$o= YHaoyot)
o= leoyl o)
¢ = (feay.v)

2\ one-to-one coordinate transtormation is eusured through the nonvanishing Jacobian of
coordinate trawsformation. By the chain rule of diflerentiation. the Maxwell equations

acquire the wllowing forn. similar to that in the Cartesian system.

AT AT AN SN (2.5)
it UN un g

The three-dimensional probleny is separated into three one-dimensional problems along
cach transformed coordinate line. For the present purpose. only one component of the
Maxwell equations is presented. The other components are nearly identical. differing only
i the cyvelic rotation of the metrics of coordinate transformation. The eigenvalues of the
seneral curvilinear system are obtained after some algebraic manipulation. s expected.
the functional forms are stmilar for all components in the transformed space and the details

will not be presemed here.

oo
A 2.9
TR 0 (=)
T = TV (). e e w0y 052 0 (2.10)

[ |ergre lergre
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Lollowing a similar procedure as nsed i developing the characteristic equations lor the

Cartesian systenn, a Wpleal set of invariants along one coordinate is

i . )
w o= /i (b = L) = LML —£,€ M+
(+¢) 1 (2.12)
L[ .
w o= - /‘—,<:~L(—£J-L;)—£,:,,Il,+
($+&) 1, - ;,(JL} (2.13)
wy = i, /(_l (\.Cz/L‘J' - fJﬁL‘U) - \(r\f-U: - {515:111-/+
(&2 +¢) 1] (2.11)
1 ,
o= G|\l - R — et
(G +¢) i, -] (2.15)
ws = f_;’.b.,-mféyby+<J.-£:Lx (2.16)
we = M+ &G, + &8 (2.17)

The numerical solution of the Maxwell equation is obtained in characteristic variables by
three dillerencing operators along transformed coordinate lines. Forward or backward finite-
dilference approximations are formed according to the sign of the associated cigenvalue.

At the present stage of algorithin development. only two-dimensional simulations are at-
tempted to seck confirmation of the basic concept. Test cases consist of lucident trausverse
clectric and magnetic waves propagating through a finite computational domain and clec-
tromagnetic pulses generated by an electrical current source perpendicular to the plane of
wave motions. Although these simulated phenomena are elementary. they pose severely de-
manding uunerical accuracy requirements for describing discontinous wave behavior and

vet possess all essential features of a scattering field. Therefore. the physical boundary

9




conditions ol a scattering body are not attempted in the present aunalysis. Under this
framnework. nunerical results reflect the best possible performance of the new numerical

procedures i shimnlating the scattering electromagnetic field.

10




3. Numerical Methods

Since the Maxwell equations are diagonalized in cach spatial direction and compeletely
uncoupled in terms of cigenvectors and associated eigenvalues (positive. negative and null).
the windward finite difference approximation is used to better describe the physies. The
solution procedure for the cigenvector tied to the null ecigenvalue (Egs 6. and 16.17) is
trivial. Lo, the unidirection eigenvector is an invariant with respect 1o time. For a two
dimensional problem. only two split flux equations with nonzero cigenvalue are needed to
be solved i cach coordinate direction. Three second-order temporal and spatial. explicit
and implicit numerical schemes are implemented for the present investigation.  All the
algorithins cousidered are cither based on or related to Warming and Beam’s works for
solving the Luler equations®™=,

‘The two-step upwind explicit method by Warnming and Beam®™ has been adapted for solving
the Maxwell equations”. This explicit scheme has a conditional stability property that
restricts the allowable time step by a CEFL value of 2 for a one-dimensional problem. The
theoretical limit is reduced to a value of 2//3 in three-dimensional simulations. In practical
applications. the allowable time-step size which is dictated by the minimum grid spacing.
can be drastically reduced even more by the thin film partitions of diclectric media.
One-dimensional solutions of this particular scheme satisfy the shiflt condition®% at a CFL
number equal to 1 and 2. Solutions that possess this unique property coutain no quasi-
physical error and are therfore highly desirable for accurate description of reflected waves
in the far ficld of a scattering problem. In the present formulation. the two-step method
can be simplified to a single-step algorithm by substituting the predicted result into the
corrector. The resultant finite-difference approximations for the positive and the negative

cigenvalue equations acquire the following forms:

11




[\ A

Ty = wLy) - A [ (e, j) = (e = L]+
l/\lj[ |/\| -Al o D FYTRLN i )
o | ay et =2t = L)t
wh (i —=2.7)] A>0 (3-1)
o o A ALY o : '
W) = et ) = I—L__z— (W) = e+ 1)) +
l/\ _X[ ‘/\'A[ J. [ "(i ) ‘)l ”(A+J. )+
7=t ST — Qe ,
AR Ar ¢ / [ ’
wit2.j)] A<0 52

For the multidimensional problem. the cyclic fractional-step sequence and the total sum
procedure were included in the present analysis. Numerical solutions generated from both
procedures retain second-order accuracy in space aud time. There is essentially no dispat-
ity between solutions by these two explicit methods. although the fractional-step method
requires additional data at the intermediate temporal step. In addition, the numerical etfi-
ciency advantage of the {ractional-step method over the total sum scheme no longer exists
for solving wave equations. Therefore. no further effort was devoted to its evolution at the
present time. For the explicit methods. the numerical boundary conditions at outer edges
of the computational domain are easily implemented by specifying data of the exact in-
coming wave compenent aud by enforcing the null value of the eigenvector in the direction
of the exiting wave.

Lollowing the development of Warning and Beam's trapezoidal, second-order implicit
approximate-factored algorithms for solving the two-dimensional hyperbolic system®®, the

finite-difference approximation can be given as the following:

(1 + éAAti) At = — At [,\ A

- T
dwy

{(3.3)

Jda dr Dy
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| ()
1+ :/\Al.(—> Au'{;“ = —_Bu'; (3.1

2 d//’
One notes that during different nunerical sweeps. the dilferencing operators do not act ou
the same eigenvector. Therctore. after cach numerical sweep. the cigenvectors associated
with the next spatial orientation need to be updated by the most recent caleulation. This i
the direct consequence of our inability to simultancously diagonalize all coeflicient matrices
of the Maxwell cquations. Since relationships linking the cigenvectors and the electromag-
netical field variables are explicit and unambiguous. this inconvenicnce does not inmpose an
inhibiting constraint for further development mto three dimensions. On the other hand.
the anticipated future generalization to include arbitrary curvilinear coordinates and di-

- “: ( . . . .
299 In the present investigation.

clectric media will incur additional errors of lincarization
the system of equations is linear by virtue of the facts that all phenomena occur within an
isotropic medium and all metrics of coordinate transformation are assigned constant values.
Therefore. the similar matrices ol diagonalization are independent of space aud time and
can be brought into the differential operators to complete the formulation. Otherwise. the
linal characteristic equations can be achieved only after a local lincarization process. This
is. however. an inherent feature of using implicit methods to solve a nonlinear equation
system.

ln the original work of Warming and Bean on the construction ol implicit factored schemes
for hyperbolic systems®. a trapezoidal formula in tine and internally inconsistent wind-
ward scheme was established. Internal inconsistency nnplies that the explicit and mplicit
differencing for temporal evaluation are unbalanced. The explicit (RUS) differencing is
given by a three-point one-sided approximation. whereas the implicit (LIIS) differencing is
represented by a two-point one-sided approximation. Although the latter difference approx-
nnation is lirst-order. it operates on the increment of characteristics. and as a consequence
the resulting scheme is spatially second-order lor any fixed ratio of temporal and spatial

increments=, This implicit scheme is conditionally stable for the trapezoidal formula and

13




it satisfies the shift condition at CEL equal to 1. The present time-centered and consistent
three-point windward scheme is developed from this framework. The point of departure
lies i the tact that the governing hyperbolic system of equations is uncoupled by diag-
onalization. The pentadiagonal coellicient matrix structure of a bidirectional windward
differencing approximation is climinated. In the present split flux implicit formulation.
cach characteristic equation can be cast into a simple bidiagonal matrix structure and the

wversion process is straightforward. The specific equations solved are:

X sweep: lor A > O .
[ =2 (820)] witig+ ‘

[wii = L)+ wi(i = L. j)] ~

(—‘f;) [wr(i =2, ) + wili = 2.j)]

(89 [Beftig) = g tij = D+

wh (i J =) + (3u7 ()=

Ly (e g+ 1) +w (e + -))}"

7~ ¥

wili-j) = Ty : (33)
For A < 0:
[l — % <\§‘)} w(i )+ ]
(284) fwrti + 1) + wili + L j)] =
11(}::‘) [wi(i +2.5) + @i +2.))] = ’
(30 [ ti ) = deef (i = 1)+
wi(ioj=2)) + (3uj (i j)- '
hw> (1. l+u' ] +2
wilioj) = A Jt:%(%f)f I (3.6)
For A = 0:
wi(t. ) = whi J)—é(/—/%) [( (1.7 +1)
wt(e j—l))+(t (tey+ 1) —w (1 J—l)] (3.7)
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Y sweep: Lor A > O:

{3.3)

For A < 0:
143 (2] i
ALY el Ly —wjte.j+ 1)) =
(32) [wp g + 1) = wjticj + 1)
() Bt 420 = witioj + 2)4]
[u-‘w'.ﬂ — wii. )]

ARIE FEE) (3.9)

For A =0:

n+1l;

wy T g) = wple ) (3.10)

Lu general. the algorithm is unconditionally stable when applied to a simple wave equation.
a feature which may be very valuable in improving numerical efficiency for computational
techniques in clectromagnetics. The elementary stablity analysis of this algorithm is pre-
sented by the modulus of amplification factor and the relative phase crror in Figures 1
and 2. respectively. The values of modulus arve depicted for the range of CI'L numbers
from 0.75 to 3.0. It is clear that the numerical method is dissipative and the numerical
crror is diminished monotonically as CFL is increased. On other hand. the relative phase
angle exhibits a predominant leading error for CFL values less than unity. then switches to

a persistent lagging crror for CFL values greater than 2.
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Figure 1: Modulus of Amplification Factor 0.75 < CFL <50
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Figure 2: Relative Phase Error 0.75 < CFL < 5.0
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In the range of CFL numbers from 1 to 20 the rcdative phase angle changes from a slight
leading error to a lagging crror according to the increasing wave number. The cross-over
of relative phase angle from leading to lagging error takes place i the mid-range of wave
nuber aud constrains the discrepancy to a relative low magnitude i a wide spectrum.
Most importantly. the relative phase error is significantly less than most time- and space-
centered hmplicit schemes in the high wave munber domain®#,

For the approximate factored implicit scheme., the implementation of nwnerical boundary
conditions at the intermediate time step is more complicated than for the xplicit method.
ln the case when an exact datum at the artificial boundary is known. the mtermediate
value must be extracted from the next consecutive nwnericat sweep. That i, the boundary
conditions of cqnations (22). {23). and (21) nmust be derived from equations (25). (26). and
(27} respectively, whereas for the explicit caleulations. this issue is completely eliminated
by the total sum procedure. For the case where a nonreflecting wave condition is required.
the null valne of the cigenvector opposite the exiting wave is imposed. Then, any error that
may be incurred is contributed by the misaligniment of the orientation of wave propagation
and the coordinate direction. In principle. this error could be remedied by the coordinate

translorniation.




4. Discussion of Numerical Results

Al numerical results were generated on o 13 - 13 eqnallyv-spaced Cartesian svstenn i which
metries of the coordinate transtformation assimed a value of either 1or 00 Vhus the h-
carizaticn error is completely Thninated from the present analvsis. Furtier developient of
tie present wechodology for practical applications to inclde diclectric media and arbitvrary
scattering bodies will be parsued in upcoming efforts. An RIS 1D/120 GTX workstation
was used exclusively to generate all numerical resubts, “The relative numerical efficiency
ol all studied numericnl procedures is probably best evaluated by the count of arithmetic
operations to process the two-dimensional field data.

It is obvious that the upwind cxplicit method requires the fewest arithmetical operations
to contplete a fietd point caleulation. However. the trapezoidal. consistent inplicit niethod
hias no tuposed restriction from the stability condition and can process data at far greater
titne steps. This favorable munerical feature will he ever more apparent when the diclectrie
tedia are separated by a thin coating and the time step allowed is controlled by the smallest
spatial dimension, Supported by a suttable nesh system for required nnmerical resolution.
the trapezoidal consistent implicit method could have a mneh higher numerical efliciency

R R (1]

than most procedures currently i use

Table 10 Arithmetical Operational Count of Numerical Schemes

Basic algorithm Arnithmetical

Operational counts

Single-step Upwind. Explicit 52
Trapezotdal. Inconsistent Implicit 7S
Trapezoidal. Consistent Implicit 103
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Numerical results consist ol three groups. First a series of one dimensional wave motion
calculations for all three nuerical wethods at a range of CEFL values from 0.7 to 2.0
I> presented. Ninnerical vestts o explicit aud implicit methods are nvestigated for their
abiliny 1o accomadate the propagation ol a piccewise continous disturbance and to quantify
qrasi-physical errors. I the second group of results. transverse waves traveling obliquely
across orthogonal two dinensional coordinates ave presented. The numerical schen.es are
examined for seusitivity ol compited wave stractire telative to the imposed bhoundary con-
ditions. Fiually. the new munerical methods are applied to simulate a locally nonanalytical
outwird propagating clectromagnetic lield generated by an electric current perpendicular
to the plane of transverse waves, Iu this group of results. the combined effects ol a sin-
gular perturbation and 1ts ontward propagation through a finite compuational domain are
delineated.

lu Frgure 3. the exact clectrical lickd density of a traveling wave is compared with munerical
resubts from the trapezoidal consistent implicit (TCL) and the single-step upwined explicit
(SUL) schiemes at the CEFL valuce of 20 This 1s also the maximum allowable time step that
can be specified for the SUL method. The solutions are presented at instances when a right-
runping wave front reaches the mid-point of the computational domain (Fig. 32) and exits
the nwmnerical boundary respectively (Fig 3b). The shift property of the solution by the
SUL scheme indicates a perfeet translation ol the nitial value in space. The discontinnous
coting wave front is captured precisely by the SULE method but not by the 1CT schirne.
When the impulse wave front moves through the computational domain. the SULE method
duplicates the exact solution at ecach and every discretized point (Fig 3a). This highly
desirable property of a numerical solution is not preserved for general two-dimensional
computations. In contrast. the solution of TCL scheme yielded an 8.-percent maximum
discrepancy from the exact solution.

tu spite of the fact that the TCL method has no theoreticel stability limit on the time
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step. the numertcal accuracy is controlled by the time step adopted. In the present inves-
tigation. the desired numerical accuracy can be improved by reducing the CEFL number.
or equivalently by adding grid nodes to resolve a given wavelength while keeping the CFL
value unaltered. Tu Figure Lo the enriched spatial resolution s achieved by changing the
period of the wave from 17 to 250 instead of doubling the number of nodes in space from
15 to 90, \x a consequence. cach wave will he resolved by 1) points in comparison to the
previows 220 and the maximun numerical error at the same CFL value of 2 diminishes to a
magnitude of 0.18 pereent. In essenced if the TCL scheme has a suitable supporting mesh.
a greater flexibility exists in temporal evolution of accurate numerical results. By virtue
ol the more Lavorable stability property than explicit schemes. the allowable time step of
the implicit scheme depends only weakly on the mesh spacing. ‘This particular property
permits a wider time-step selection and perhaps will lead to a more efficient procedure for
problens solving,.

In Figure 5. the exact solution of the electrical field intensity and solutions from the SUL
and TCLschemes are presented together for a CLL of 130 At this condition, the perfect shilt
does not prevail for the solution via the SUL method at the discontinous wave front (Fig Sa).
Numerical solutions from the two methods indicate distinetive behavior at the singularity.
The solution via the TC1 method approaches the undisturbed field monotonically while
the solution via the SUL method vields an oscillatory pattern near the finite jump. As the
wave front passes through the numerical domain. the solution by the SUE method indicates
a superior numnerical accuracy over the solution by the TCL Scheme. The deviation from
the exact result is less than 2-percent (Fig 5b).

The comparison of solutions of SUL and TCI schemes and the exact solution for a sunple
wave with a period of 27 and CI'L of 2/v/3 is presented in Figure 6. The selected CFL value
coincides with the theoretical limit of the SUE method in three dimensions. Again. numeri-

cal errors at the singular moving wave front are observed. but the numerical behavior of the
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two methods is reversed. Now the SULE solution approaches the undisturbed electrical field
monotonically and the TCEsolution exhibits oscillations across the jump with a maximun
normalized discrepancy ol 5.5 percent (Fig 6a). In the entire domain downstream of the
wave {ront. the muncerical errors of both schemes are conlined to a magnitude around a
one-hundredth of one percent (Fig 6b). From these observations: the optinnun application
rauge ol the TCL scheme for high numerical resolution electromagnetic simulation may
reside within the CUL values above unity.

In Figure 7. for the first time. all numerical solutions developed in the present analysis
are compared witl the exact solution at a CFL of unity. LFor the trapezoidal inconsistent
imphett (11 schemel this CFL value represents the maximum time step aliowable from
the stability analvsis of a lincar initial value svstem. Both solutions of the SUE and TII
method possess the shift property and thus produce no numerical error at the moving wave
front (Fig Ta). It may be of interest to note that the TI scheme is only one of a few
implicit algorithims that can produce the simple wave solution with the shift property. The
solution of TC'1 scheme alone shows numerical overshoot preceding and dissipative error
trailing the moving wave front. As anticipated. solutions of the SUE and the TII schemes
reached perfect accord with the exact solution 1n the complete solution domain (Fig 7h).
The solution of T'CL scheme underpredicts the amplitude of wave by a maximum of 1.7
percent and contains an identifiable leading phase error which has been verified by our
carlier discussion of Figure 2.

The last comparison of all numerical solutions 1s depicted in Figure 8, where the C'I'L
number is asigned a value of 0.73. At the discontinuous wave front, all numerical simulations
exhibit oscillatory error across the jump. The numerical errors normalized by the exact
wave amplitude span an extreme magnitude of 10.2, 10,9, and 13.4 percent respectively for
the SUL. TH and TCI schemes (Fig 8a). In the postwave front region, the solutions by the

SUE and Tl schemes are nearly identical (Fig Sa). The largest error is again exhibited by
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the TCL schete and amounts to less than 2 percent. However: one should note that the
TCL scheme is not reconmended in this range of CEL values in practical application. The
newly developed trapezoidal consistent implicit procedure may be critical for improvenient
ol numerical efliciency of electromagnetics simulation. Overall. the TCL scheme 1s casily
the best choice for further development.

In the second group of numerical results. the three numerical procedures are compared
for a propagating transverse wave at an angle of incidence to the coordinates. In all cases
studied. the exact solution of the incident wave was used to overspecify nwmnerical boundary
conditions of the initial value system. Under this condition. the well-posedness issue may
arise for the difference system®. The prescribed exact wave solution at the truncated
boundaries may still appear as a perturbation to the difference svsten. The possibility of
sustaining a continuous numerical solution by a wider class of perturbations to the initial
data was assessed here. All solutions were evolved for more than a thousand time steps at
a CI'L of unity which corresponds to more than 22 cyeles of a right-running wave. The
unplicit schemes are multiple-step methods vwhich require additional intermediate temporal
data at the computational boundary. The implementation of these intermediate temporal
data at the numerical boundaries for implicit methods (Tl and TCL) was also investigated.
Figure 9 depicts a typical electrical field intensity of a traveling wave across the two-
dimensional domain at 15 degrees with respect to the @ coordinate (result of the TCI
Scheme). Numerical solutions of the three schemes show comparable [eatures and are nearly
identical. In comparison with the first-order numerical procedure’. no visible dissipative
crrors are observed along the wave crests.

In Figure 10, the L2 norins of calculated electrical field intensity of the SULL TIL and TC'1
schemes are given. The maximum discrepancy of the L2 norm from the exact solution
belongs to the SUE scheme with a magnitude of 0.011. The pattern of quasi-physical

crrors exhibits a syvmmetric structure with respect to the principal axis of wave motion
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Figure 10: L, Norm of Electric Field Intensity (C'FL = 1.0.
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aned all crrors are clustered adjacent to the numerical boundary (Fig 0a). Basically. the
specilication of the exact sobition at the boundary appears as a perturbation and does not
necessarily belong to the class of nitial data for whicl the differential problemi is well-posed.
I'he solution via T scheme vields @ maxiimum L2 norun lower by one half to that of the
SUL method (Fig 10h). The structure of numerical error is asynnnetric to the principal axis
ol the wave propagation. However. a definitive attribution of this peculiar feature to cithier
the artificial numerical boundary conditions or the numerical sweep bias is not certain
present. The mnnercal result generated by the TCLschenme contains the lowest ervor with
the maximum L2 norm (0.0028) just a filth of the SUL method. The distribution of quasi-
phyvsical error is stnilar to the two trapezoidal implicit methods as expected (Figs. 10b.
10¢). Nomtnallye all numerical algorithms considered are second-order i time and space.
but the subtle diflerence in numerical approximations tor the TCL scheme has gained it a
superior accuracy over the TIH scheme in the two-dimensional calculation.

The cffects of intermediate temporal data implementation for the approximate factored
schieme on solution accuracy were isolated by carrving out two otherwise identical caleu-
lations with different data sets for the intermeaiate step. .\ right-running transverse wave
clined at 60 degrees to the w-axis was simulated by the TCL scheme. Numerical results
were recovered by repeating the new time level data at both the first and the final nu-
merical sweeps (Fig Lla). and by deriving the lisst sweep data from the final time level
as nddicated in our carlier discussion (Fig 11b). These results demonstrate that applyving
repetitively the uext time level data for both factored sweeps has imtroduced greater crrors
than has applying the derived data near computational boundaries. The former procedure
ix commonty used in most computational Huid dynamics practices even for unsteady fluid
dyvunamics phenomena®?, Its inpact on numerical stability and fidelity to physics in solving
a time-dependent wave problem may be crucial. In addition. the intermediate solution

from au approximate lactored scheme is known to Lhave no corresponding physical meaning
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which conld he an ndesirable leature of the present nupliait procedures. .\ remedy lor
this shorteominge. i necessary. may require revertine the present iplicit aeorithin w the
ovigital alternatiue divection inplicit formnda o >

I'he Last oroup of problems analvzed s the transverse electromagnictic wave induced by a
polnt current sonree. Since a isottople point source will generate a cirenlar propagation
pattern and the relatively sparse mesh poiut distiibution at the point souree i~ unable
to provide sullicient munerical resolntion™ . only the ability ol solutions to retaln the
stuiple radiatine wave pattern is investigated, e boundary conditions on the truncated
cotnpittational domain require incoming clgenvectors fone-dimensional characteristies) to
vanish in all directions. The oue-dinensiona characteristic boundary condition is the exat
aud well-posed condition for one-dimensio -al wave motion.  When applied to wultiple
ditensional phenomena. it may deecncrate to only first-order accuracy. depending on the

. . . . . . . T2 LS
oricntation and intrinsic strueture of the wave motjon =200

I present analvsis. the
characteristic bonndary condition. whivh s an inhicrent and intended consequence of the
thnx-splitting formulation. was iposed on cach coordinate divection. In this sense. this
approach represents the worst possible scenario for solving the pomt source problem in
which the radiating wave motion is vescribed by a Cartesian systemn. Unfortunately. wusing
the coordinate transformation to alien with the principal axis of wave motion las to wait
for [urther development. .\ typical munerical resalt using the TCL scheme 1s depicted in
Figure 12, The = component of the eleetrical. and w. g components of the magnetic ticld
intensities were projected on separated planes but maintained at the identical physical
location. Since quantitication of these computed results was not attempted. only genceral
featnres of the results will be brietly mentione LAt the singular point. the current induees
a polarized electrical wave moving radially with a nearly svmmetrical front. whereas the
two cotponents of the magnetic tield reveal a basically tvo-dimensional structure opposite

in phase across the point source. The numerical results <o similar to those of Anderson’s
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calendation” and reproditee the leatures ol the phivsicst,

Calculated electrical field mtensities by the SULRL THL and TCL schemes are depicted 1
Figure 130 .\ monochromnatic point source is designated at the midpoint of the computa-
tional domain (1) = 23) with « normalized wave length of 27 and is switched on at the
start ol the numerical simulation, .\ total of 16 time steps were taken to allow the first
electrical wave to pass through the truncated computational domain. Therelore. all given
results are captured when the relatively sensitive trough of the wave front impacts upon the
wrnerical houndaries. Like all previous one-dimensional calculations. each wave packet s
resolved by 22 nodes. Lo compare the three numerical results on an equal footing. identical
contour levels were used for the isodvnamic plots, In general. all numerical sinulations
reveal similar wave structure i that all sodyuamics form nearly concentric circles. Small
ditferences in the wave structure are probably induced by relative phase errors of cacl -
dividual solving scheme. but the most signiticant distortion of wave shape is recognized to
be caused by the one-dimensional characteristic boundary conditions. The SUL method.
being a single-step explicit method. produced a much better definition of the clectrical pul-
sation at the point source. ‘The specilic behavior closely reseuibles the numerical result of
Anderson on a 30 - 30 wesh svstem”. All implicit schemes tested here indicated a need for
mesh relinement at the singular point. However. the TCL scheme seems to produce a less
wave distortion than TH innnediately adjacent to the truncated computational boundaries.
In order to demonstrate the greater numerical efficiency of the TCL scheme, this proce-
dure alone was applicd to a pulsating point source problem at a CEFL value of 2. which is
nnattainable by SUL and TI methods. The point source was moved to a corner of the
calculation domain (10.10) and the transverse wave packet was still defined by 23 nodes
in both coordinates. The numnerical prediction of the clectrical field intensity is displayed
alter an arbitrarily selected 120 time steps. ‘The resolution at the point source appears to

markedly improve but really is just highlighted by the denser contour levels (Fig 11). A
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Figure 13: Isodynamics of Electric Field Intensity (CFL




quantative comparison with other known results has not been achioved at present™, The
only conclusion one may offer is that the numerical results are consistent with the previous
calawdations depicted i Figure 130 The accumnlated distortion of the radiating wave strue-
ture generated by the one-dimensional characteristic boundlary conditions becomes more
annovingly pronounced ou rectilinear coordimates. particularly. i view of the fact that the
present formulation s designed to satisly the exact one-dimensional characteristics and s
capable of aligning the coordinates with the principal axis of wave motion. thus redue-
ing the farficld to a one-dimensional problem. This observation reinforces the urgeney to

complete the incorporation of coordinate transformation into the new method.
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Figure 1L Isodynamics of Electric Field Intensity (CFL=1.0. TCI Scheme. p=1r)
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5. Conclusion

New trapezoidal windward implicit schemes based on the flux splitting concept were suc-
coss{ully developed to solve the time-domain Maxwell equations. ‘The trapezoidal consistent
inplicit scheme s unconditionally stable for the linear inttial value system and provides
a greater flexibility and numerical efficieney to numerically simulate electromagnetic wave
phenomena. Applied to two-dimensional problems. the present implicit schemes generated
solutions with an accuracy comparable 1o the established explicit method and allowed a
greater time step size to desceribe the time-dependent wave phenomena.

The full potential of the present eigenvector formulation is still not fully explored until the
general coordinate transformation is functional. By realigniment of the coordinate to the
principal wave motion. the eigenvector formulation will be enhanced by the exact and well-
posed one-dimensional. no-reflecting characteristic conditious on truncated computational
boundaries. In principle. the extension of the procedure to three-dimensional systems is
possible but may not be straightforward. Lffort is required to convert the present approx-

imate factored scheme to the orginal ADI method for temporal accuracy.

10




6. References

1. Park. C.. “Assessment of 'Two-Temperature Kinetic Model for Dissociating and Weakly-
tonizing Nitrogen.” J. ol Thermophysics and Ieat Transl Vol 2. No 1. Jan 1989, pps-16
2. Shang. J.S. and Josvula. Lo "Numerical Sunulations of Non-Equilibrium Hypersonic
Flow Past Blunt Bodies.” ALV Preprint 88-05120 Jan.. L1988, Aceepted by ALY J for
publication.

3. Candler. GV, =On the Computation of Shock Shapes in Non-Equilibriun Hy personic
Flows.” ALV Preprint 89-0312. Jan.. 1989

Lo Aftosmis. M. and Baron. J.R.. “Adaptive Grid Embedding in Nou-Lquilibrinm Hy-
personic Flow.” AL Preprint 89-1652. June 1939

3. Bird. R.BLL Stewart, W E L and Lightfoot. E.NTransport Phenomena. John Wiley and
Sons. lnce.. New vork 1960

6. Shankar. V.. Hall. W, and Mohammadian. Ao =\ CFD-Based Finite-Volume Procedure
for Computational Llectromagnetics - Interdisciplinary Applications of CFD Methods.”
ALY Preprint 89-19870 June 1939

7. Anderson. DAL tInterdisciplinary Applications of Simulation Computational IFluid
Dyvnamics (CEFDY and Radar Cross Section (RCS).T AFNTL-TR-83-65. A Armament Lab..
Eelin L7 Base. FL.o April. 1983

S, Goorjian P = Algorithimm Development for Maxwell's Lquations for Computational
Electromagnetisin.” ALNN Preprint 90-0251. Jan. 1990

9. Yee. S0 v Numerical Solution of Initial Boundary Value Problems Involving Maxwell's
Equations in an lsotropic Moedia.” IELEE Trans. Antennas Propagat. Vol AP-1.1. pp 302-
307, May 1966

10, Tallove. .\, and Umashankar. k. R..-Finite-Difference Time-Domain (FDTD) Modeling

of Electromagnetic Wave Scattering aund Interaction Problems.” IEEE Antennas Propaga-

11




tion Newsletter, April. [OSS

L1, Harrington. R. R. Thne-Harmonic Electromagnetic Firelds McGraw-1Hill Book Co.. New
York. 1961,

12, Somumerleld. .. Partial Differential Equatious lu Physics. Academic Press Inc. Pub-
lishers. New York. NY. 1919

13, Higdon. R.. »Absorbing Boundary Conditions for Difference Approximations to the
Mudtidimensional Wave Equation.” Math. of Cowmp. Vol. 17, No. 175, 1936, pp 137-159
L1 Enquist. B. and Majda. X = Absorbing Boundary Conditions for the Numerical Sini-
ulation of Waves.™ Math. of Comp.. Vol. 31. July 1977, pp. 629-651

£5. Muir. Goo =Absorbiug Boundary Conditions for the Finite-Difference Approximation
of the Thne-domain Electromaguetic Field Equations.” IEELE Trans. Electroma. Compat.
Vol EMC-23. No. L. Nov. 1981 pp.377-332

16. Steger. J.L. and Warming. R “Flux Vector Splitting of the Inviscid Gasdynamics
Lquatious with Application to Finite Dillerence Methods.™ J. Comp. Phys.. Vol.10. No.2.
Feb, 19870 pp.26:3-293

17. Vau Leer. B, lus-Vector Splitting for the Euler Equations.” Lecture Notes in physics.
Vol. 170, 1982, pp. 301-312

I8, Roe. P.L.. “Characteristic-Based Schemes for the Euler Equations.” Ann. Rev. Iluid
Mech.o Volo IR0 1986, pp.337-365

19. Anderson. W.k. Thomas. J.L. and Van Lecr, B.. A Comparison of Iinite Volume
I'lux Vector Splittings for the Euler Equations.” ALAA Preprint 83-0122. Jan. 1985

20, McMaster. D.L.. Shang. J.S. and Gaitonde. D.. A Vectorized Gauss-Seidel Line Relax-
ation Scheme for Solving 3D Navier-Stokes Equations.” AIAA Preprint 89-1948-C'P. June
1939

21, Gaitonde. D. and Shang. J.5.. *A Numerical Study of Viscous Shock-On-Shock Hyper-

sonic Flows With a Modified Steger-Warming Flux Split Scheme.” AIAA Preprint 90-1191.




June 1999

22, Krewss. L O. vInitial Boundary Value Problews for Hyperbolic Systems.” Common.
Pure and Applied Math, XXIL 1970, pp. 277-298

23, Shang. J.S.. "An Assessment of Nunerical Sotutions of the Compressible Navier-Stokes
Equations.” J. of ircraft. Vol. 220 No. 50 May 1985 pp. 333-370

210 Harteno Al ~Ona Class of High Resolution Total-Varation-Stable Fiuite Difference
Schemes.” SLAM J. Num. Anal.. Vol 210 1981 PP, 1-23

25, Yee, HLCL A Class of High-Resolution Explicit and Implicit Shock-Capturing Meth-
od=.” NASN TM 1010830 Ames Research Centers C\ Feb, 1939

26. Godunov. S.K.. "\ Finite Dilference Method o the Numerical Computation of Dis-
continuous Solutions of the Equations of I'luid Dynamics.” Math. Sh.47 1939, pp. 337-393
27, Warning. R and Beam RALSUpwind Second-Order Difference Schemes and Applica-
tions in Unsteady Acerodyvnamics Flows.” Proc. ALAN 2nd Computational Fluid Dynamics
Conference. Hartford. CNO 19750 pp. 17-28

280 Warning., R and Beamn RALOn the Construction and Application of lmplicit
Factored Schemes for Conservation Laws.” SLAM-AMS Proceedings. Vol. L1 1978, pp.
83-129

29. Kutler. P.and Lomax. H.The Computation of Supersonic Flow Fields about Wing-
Body Combinations by Shock-Capturing Finite Diflerence Techniques.” Lecture Notes in
Physics, Vol 80 Springer-Verlag. Berlin. 1971, pp. 21-29

30. Anderson. DXL Tannchill J.C.Land Pletcher. R Computational Fluid Mcchanics
and Heat Transfor. Hemisphere Publishing Corporation. McGraw-1hil Beek Co.. 1981

31. Briley W.R. and Mcdonald .. "On the Structure and Use of Linearized Block Implicit
Schemes.” J. Comp. Phys. Vol. 31 No. 1. Jan. 1980, pp 31-73

13




List of Abbreviations and Symbols

ll
I

1.D.C coetlicient matrices of the Maxwell equations
'L Courant-Iriedrichs-Levy number

D matrix of the eigenvalue

I clectric field inmtensity

.G flnx vectors of the Maxwell equations

i magnetic field intensiy

i indexes ol the diseretized spatial points

5 matrix of simiar transformation

! time

U dependent variables of the Maxwell equations
[N cigenvectors

NNz Cartesian coordinates

¢ clectric permittivity

A cigenvaiue of coeflicient matrices

i permeability

¢ translormed coordinate systewm

08,08 metrics of coordinate transformation

SUPCISCIipts

+.- Variable associated with positive or negative eigenvalue respectively
* Intermediate variable during numerical sweep

1 time level
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